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Developing spatial reasoning

zachary hawes, diane tepylo, joan moss

      In brief …

Once believed to be a fixed trait, there is now widespread evidence that 
spatial reasoning is malleable and can be improved in people of all ages. In 
this chapter, we first discuss the relationship between spatial reasoning and 
mathematics and then we present a variety of spatial training approaches 
that have been shown to be effective not only in supporting children’s spatial 
reasoning but also mathematics performance. 

Spatial reasoning as a foundation for mathematics learning
There is an emerging consensus that spatial reasoning plays a foundational 
role in the early development of mathematics. Due in part to the recent 
design of age-appropriate measures of spatial reasoning for young children 
(see Chapter 2, Textbox 1), researchers have begun to understand how early 
spatial skills relate and contribute to the learning of school mathematics. In 
a longitudinal study, that followed children from the ages of 3 to 5, Farmer 
et al. (2013) found evidence to suggest that children’s spatial skills at 3 years 
of age were strong predictors of how well the same children performed in 
mathematics two years later, upon formal school entry. Moreover, spatial skills 
were better predictors of later mathematics performance than vocabulary and 
even mathematics. 

In another study, Verdine and et al. (2014) reached a similar conclusion. 
Spatial skills assessed at the age of 3, along with executive function skills 
assessed at the age of 4, predicted over 70% of the variability in mathematics 
performance at 4 years of age. Even after controlling for the contribution of 
executive functions, spatial skills predicted 27% of the variability in children’s 
mathematics performance. It is worth noting that in both of the above studies, 
the researchers used a relatively simple means to assess children’s spatial 
reasoning. Children were presented with Mega-BlockTM arrangements and 
asked to copy them as accurately as possible (see Figure 3.1). A score was 
assigned to each child based on how accurately he or she was able to replicate 
the design.
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Figure 3.1: Stimuli for the Test of Spatial Assembly (TOSA; see Verdine et al., 2014b).

We mention how the researchers assessed spatial skills because we think 
it is relevant for the consideration of early classroom interventions. Indeed, 
there is sufficient evidence suggesting that early construction skills – of the 
sort that involve copying, drawing, and block building – play an important 
role in the learning of mathematics (Casey, Andrews et al., 2008; Casey, Erkut, 
Ceder, & Young, 2008; Tzuriel & Egozi, 2010). For example, Wolfgang et al. 
(2001) carried out a longitudinal study that followed children from preschool 
to adulthood (a period spanning 16 years). The researchers showed the 
complexity of block building at age 5 was a significant predictor of how well 
the same individuals performed in high school mathematics.

Taken together, the above research findings suggest that spatial reasoning 
and mathematics are co-related and that early spatial skills may provide a 
foundation on which mathematics learning is built. This raises the question of 
how and why mathematics and spatial reasoning are related.

How and why spatial reasoning helps “do” mathematics
The question of how and why spatial reasoning and mathematics are linked 
remains largely unknown. In their recent review on the subject, Mix and 
Cheng (2012) urged the field to move beyond correlational studies, stating: 

The relation between spatial ability and mathematics is so well established 
that it no longer makes sense to ask whether they are related. Rather, we 
need to know why the two are connected – the causal mechanisms and 
shared processes – for this relation to be fully leveraged by educators and 
clinicians. (p. 206)

The last part of their statement is a particularly important point. In order to 
fully harness and develop the powers of spatial reasoning in our mathematics 
classrooms, we need to have a strong theoretical stance and evidence-
based knowledge as to why the two go hand in hand. As mathematicians, 
mathematics educators, teachers and curriculum developers, we need to 
work together to understand more about the connections between spatial 
reasoning and mathematics. Indeed, teachers need to be able to recognize 
and theorize when spatial skills are needed to support mathematics learning, 
as well as when a focus on number might hinder or prevent mathematical 
understanding (Newcombe, 2014; Whiteley, 2014). 

Perhaps an example better serves this point. A teacher would have little 
difficulty explaining to a curious parent why so much time was being spent 
on developing number sense. The practicality is self-evident; numbers are 
ubiquitous and endlessly useful and for this reason, it is unlikely that a parent 
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would even ask such a rhetorical question. However, if asked to explain why so 
much time was being spent (in math class nonetheless!) on developing spatial 
reasoning, a teacher would likely be facing a much more difficult challenge. 
The relationship between spatial reasoning and mathematics is not always 
immediately apparent, and yet, decades of research inform us that the two 
are intimately connected. Based on prior research, and our own experiences 
working in classrooms, we offer three reasons why spatial reasoning is related 
to and helps support the learning of mathematics. 

Mathematics is inherently spatial 

To “do,” “create,” and “express” mathematics is to use and depend on spatial 
reasoning and spatial representations. As mentioned in Stanislas Dehaene’s 
book, The Number Sense (2011), it is “almost as if they (spatial reasoning and 
mathematics) were one and the same ability” (p. 135). Clements and Sarama 
(2011) posit that it is through mathematics that we “communicate ideas that are 
essentially spatial. From number lines to arrays, even quantitative, numerical, 
and arithmetical ideas rest on a geometry base” (p. 134). Indeed, in our own 
work in early years classrooms, we are regularly confronted with examples 
of how spatial reasoning and mathematics are intimately linked. Linear and 
area measurement, early patterning and algebra, fractions, symmetry, and 
not to mention geometry, are inextricably linked to children’s understandings 
of spatial relationships. Even something as simple as comparing shapes 
or numbers becomes an act of spatial reasoning when the objects assume 
different orientations. Interestingly, research suggests that the role of spatial 
reasoning and the use of spatial representations become even more important 
as one advances in their learning of mathematics (Mix & Cheng, 2012). In the 
following quote we are reminded to continually pay attention to the highly 
visual and spatial nature of calculus. 

The role of visual thinking is so fundamental to the understanding of 
calculus that is difficult to imagine a successful calculus course which 
does not emphasize the visual elements of the subject. This is especially 
true if the course is intended to stress conceptual understanding, which is 
widely recognized to be lacking in many calculus courses as now taught. 
Symbol manipulation has been overemphasized and in the process the 
spirit of calculus has been lost. (Zimmermann, 1991, p. 136)

It is easy to lose sight of the importance of spatial reasoning in mathematics. 
The representations used in spatial reasoning are often private or internal to 
the individual learner, and as such, are often difficult to externalize and share 
through external community conventions, or rather lack thereof (Whiteley, 
2014). In many ways, spatial reasoning is so much a part of mathematics that 
we take it for granted, we forget to acknowledge its role, and we do little to 
harness its potential (see Clements & Sarama, 2004).

Numbers are represented spatially

For over a century now, researchers have revealed a close relationship between 
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space and numbers (Galton, 1880; Mix & Cheng, 2012). Dating back to the 
late 1800s, Sir Francis Galton provided anecdotal evidence that for some, 
individual numbers were seen in the “mind’s eye” as objects that occupied 
distinct visual and spatial forms:

Those who are able to visualize a numeral with a distinctness comparable 
to reality, and to behold it as if it were before their eyes, and not in some 
sort of dreamland, will define the direction in which it seems to lie, and 
the distance at which it appears to be. If they were looking at a ship on 
the horizon at the moment that the figure 6 happened to present itself to 
their minds, they could say whether the image lay to the left or right of 
the ship, and whether it was above or below the line of the horizon; they 
could always point to a definite spot in space, and say with more or less 
precision that that was the direction in which the image of the figure they 
were thinking of first appeared. (1881, p. 86)

These number forms as Galton referred to them, provided one of the 
earliest accounts of a suspected link between numerical and visual-spatial 
processes. Galton noted that the experience of number forms was a relatively 
stable trait within individuals, but large variation existed between individuals. 
The visual-spatial properties associated with number forms varied according 
to spatial orientation, color, brightness, and perceived weight (see Figure 3.2; 
Galton, 1880; Galton, 1881). Taken together, this work suggested that numbers 
were internally represented as objects and occupants of distinct positions in 
linear space (Galton, 1880; de Hevia, Vallar, & Girelli, 2008).

During the last several decades, there has been resurgence in the scientific 
study of how humans mentally represent numbers (c.f. Dehaene, Bossini, & 
Giraux, 1993). There is now extensive support for Galton’s intuitions about the 
visual-spatial nature of numerical representations (de Hevia et al., 2008; Seron, 
Pesenti, Noël, Deloche, & Cornet, 1992). While only a small segment of the 
population (approximately 12%) experience the vivid number forms described 
by Galton, the vast majority unconsciously represents numbers spatially (Sagiv, 
Simner, Collins, Butterworth, & Ward, 2006). For example, numerous studies 
show an automatic association of small numbers as belonging to the left side 
of space and larger numbers as belonging to the right side of space, a finding 
referred to as the SNARC effect (Spatial-Numerical Associations of Response 

Figure 3.2: A number form described by one of Galton’s subjects (from Galton, 1880).
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Codes; Dehaene, 1993). As such, people are faster to respond to smaller numbers 
(e.g., 1, 2, 3) with their left hand and faster to respond to numbers of larger 
magnitude with their right hand (e.g., 8, 9, 10). The reverse is true in societies 
that write and read numbers from a right-to-left orientation, such as the case in 
Palestine (e.g., see Shaki, Fischer, & Petrusic, 200).

The influences of spatial representations of number are also present during 
simple arithmetic (Fischer & Shaki, 2014). In a recent special issue on the topic, 
a collection of findings demonstrated that not only are single digits subject to 
spatial biases, but arithmetic and even the operators themselves (i.e., plus (+) 
and subtraction (–) symbols) are associated with space (Fisher & Shaki, 2014). 
Addition problems elicit “right-side-of- space” biases whereas subtraction 
problems elicit “left-side-of-space” biases. Evidence of such spatial biases 
can be seen in the tendency for people to overestimate the result of addition 
problems and underestimate the result of subtraction problems, an effect 
referred to as the operational momentum (OM) effect (Fischer & Shaki, 2014). 
Werner and Raab (2014) discovered a link between the direction of people’s 
eye movements and type of problem they were solving. The authors’ revealed 
a shift in attention toward the right side of space for addition solutions and a 
shift in attention toward left side of space for subtraction solutions. Together, 
these and other findings (see Fischer & Shaki, 2014), are thought to reflect the 
cognitive representation of magnitude meaning along a metaphorical “mental 
number line.” 

Other examples of how the “mental number line” might be implicated 
during mathematics come from further studies from the psychology literature 
that utilize actual number lines. Over the past decade, there has been an 
explosion of research on the use and implications of findings related to number 
line estimation tasks. In a typical number line task, participants are presented 
with a line with only two end points (e.g. 0–10, 0–100, 0–1000; see Figure 3.3). 
Participants are then presented with a number and asked to indicate its exact 
location on the line. Performance on the task is thought to reflect the precision 
of an individual’s mental number line or mental counting line. Importantly, 
performance on the task has been found to strongly predict concurrent and 
later mathematics performance (Siegler & Booth, 2004; Booth & Siegler, 2006). 
The findings of Siegler and others is that with age, experience, and training, 
children’s number line performance improves as a function of more accurate 
mappings of numbers to space. 

Further evidence of a link between a spatial representation of number and 
arithmetic performance comes from Gunderson et al. (2012). In a longitudinal 
study involving two data sets, Gunderson et al. (2012) found that spatial skills 
(i.e., mental transformation skills involving rotation and translation) at the 

Figure 3.3: Example item from a number line estimation task.
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beginning of 1st and 2nd grades predicted growth in linear number knowledge 
(as assessed with a number line estimation task) over the course of the school 
year. Furthermore, children’s spatial skills at age five predicted how well 
these same children performed three years later on an approximate symbolic 
calculation task. Interestingly, this relationship was mediated by children’s 
number line performance during 1st grade. This finding is significant in that 
it suggests that spatial skills play an important role in the development of 
young children’s spatial representations of number. Taken together, this 
line of research suggests that mathematics and spatial reasoning are tied 
together through the spatial representation of numbers. Preliminary research 
attempting to leverage this connection to improve number sense performance 
is encouraging. Research has shown that playing linear number board games 
for even one hour can increase at-risk preschool students’ abilities to make 
number line estimations, and judge and compare numerical magnitudes 
(Siegler & Ramani, 2008; Siegler & Ramani, 2009).

This human tendency to represent numbers spatially is further supported 
by research in neuroscience. It is now widely recognized that both numerical 
and visual-spatial tasks require and depend on the recruitment of highly similar 
brain regions, namely, various neural networks located within the parietal 
cortex (de Hevia et al., 2008; Hubbard, Piazza, Pinel, & Dehaene, 2009b). For 
example, the spatial task that involves mental rotation and mathematical tasks 
requiring numerical processing, are both thought to rely on the intraparietal 
sulcus located within the parietal lobe (Hubbard et al., 2009b; Hubbard, Piazza, 
Pinel, & Dehaene, 2009a). Indeed, Hubbard et al. (2009) suggest that, “…the 
parietal mechanisms that are thought to support spatial transformation might 
be ideally suited to support arithmetic transformations [e.g., calculations] as 
well” (p. 238). 

The above evidence suggests that spatial and numerical processes are 
closely linked and that space is a useful metaphor for how we think about 
numbers (Hubbard et al., 2009a; 2009b). However, more research is needed 
to reveal the specific mechanisms that underlie this relationship, and 
furthermore, to elucidate how spatial representations of number are related 
to mathematics more generally, including areas of mathematics that extend 
beyond simple arithmetic and calculations. 

Mathematics and spatial reasoning involve visual-spatial working memory

Another way that spatial reasoning and mathematics might be linked is through 
shared cognitive resources, including the ability to mentally manipulate visual-
spatial information. Visual-spatial working memory appears to be especially 
important for the early learning of mathematics. Children who have an easier 
time remembering and mentally manipulating visual-spatial information 
tend to have an easier time doing mathematics (Kyttälä & Lehto, 2008; Kyttälä, 
Aunio, Lehto, Van Luit, & Hautamaki, 2003; Thompson, Nuerk, Moeller, & 
Cohen Kadosh, 2013). Given this basic relationship, some researchers have 
found evidence (albeit somewhat controversially) that training-induced 
improvements in working memory (e.g., through computerized training 
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exercises) results in improved mathematics performance (Holmes, Gathercole, 
& Dunning, 2009; St. Clair-Thompson, Stevens, Hunt, & Bolder, 2010; Witt, 
2011). For the time being, these findings suggest a cause-effect relationship 
whereby improvements in working memory can be expected to aid in the 
performance of mathematics tasks.

Recall that it is intrinsic-dynamic spatial reasoning that has been, to date, 
most associated with performance in mathematics. Mix and Cheng (2012) 
hypothesized that the strength of this relationship depends on the shared 
demands placed on visual-spatial working memory. That is, both mathematics 
and intrinsic-dynamic spatial reasoning require the active maintenance 
and manipulation of visual-spatial information in one’s mind. Therefore, 
it is possible that classroom interventions aimed at developing intrinsic-
dynamic spatial reasoning might also strengthen children’s visual-spatial 
working memory capacity – a core cognitive skill involved in the learning of 
mathematics. Future research efforts are needed to test this possibility along 
with a more detailed account of the role of visual-spatial working memory in 
spatial reasoning. 

In returning to the question of why spatial reasoning matters for 
mathematics, we have presented evidence to suggest that 1) many mathematics 
tasks use inherently spatial representations (e.g., linear and area measurement, 
visualizing multiplication as arrays, geometrical transformations), 2) numbers 
are commonly represented spatially, and 3) both mathematics and spatial 
reasoning rely visual-spatial working memory. In the next section, we examine 
the malleability of spatial reasoning and what this means for mathematics 
learning, and consider how these three accounts might be utilized in the 
design of effective classroom interventions that aim to bridge the mathematics 
and space divide. 

Spatial reasoning can be improved 
through practice and targeted interventions

The strong link between spatial reasoning and mathematics raises the 
possibility that improving children’s spatial skills might serve as a way to 
strengthen mathematics learning. To date, however, very few studies have 
pursued this line of inquiry. Uncertainty about the malleability of spatial 
reasoning may be one reason for this. After all, the possibility of improving 
math performance through spatial learning depends to a large extent on 
whether spatial skills can be taught and learned. 

Historically, spatial ability has been viewed as a core aspect of 
intelligence. Beginning in the early 20th century and spanning to the present 
day, psychologists have consistently identified spatial ability as an essential 
factor in the study and definition of intelligence. Perhaps owing to the close tie 
between spatial ability and intelligence, spatial reasoning is commonly viewed 
as a fixed intellectual trait – “either you have it or you don’t” (Newcombe, 
2010). It is not uncommon, for example, to hear someone remark that they 
“don’t read maps,” “can’t follow directions” or even go so far saying they 
“have no spatial sense whatsoever.” This “fixed” viewpoint appears to be 
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based on misconceptions and false belief. 
Decades of research confirm that spatial reasoning is malleable and 

subject to improvement with practice and targeted interventions. The most 
conclusive evidence that spatial reasoning is malleable comes from a recent 
meta-analysis that analyzed 206 spatial training studies over a 25-year 
period (1984-2009; Uttal et al., 2013). The study concluded that people of all 
ages and through a wide assortment of spatial training interventions (e.g., 
video games, course training, spatial task training) demonstrated significant 
gains in spatial reasoning. Moreover, the average effect size of training was 
large and approached a half standard deviation (0.47). To put this effect in 
context, an improvement of this magnitude would approximately double the 
number of people with the spatial skills associated with being an engineer 
(see Uttal et al., 2013). Indeed, the implications of improving spatial skills are 
significant and far reaching, especially in relation to the ever-important STEM 
disciplines. Verdine et al. (2014) go so far as to suggest that spatial instruction 
can be expected to have a “two-for-one” effect, yielding benefits in both spatial 
reasoning and mathematics. 

Although the majority of studies (67%) in the meta-analysis measured 
spatial skills immediately after training, some studies demonstrated that the 
effects of training persisted over time. In one longitudinal study, the training 
effects were still present four months after the intervention (Feng, Spence, & 
Pratt, 2007). Another notable feature of the meta-analysis was the finding of 
nearly identical near and far transfer effects. That is, training of one spatial 
skill led to improvements on spatial tasks closely related to the trained skill 
(i.e., near transfer) as well as spatial tasks that were quite distinct from the 
trained skill (i.e., far transfer). For example, in two studies, mental rotation 
training resulted in improved mental rotation skills (i.e., near transfer), but 
also led to more generalized mental transformation skills, as evidenced by 
improvements on a mental paper folding test (Wright et al., 2008; Chu & Kita, 
2011). 

Overall, the results of the meta-analysis performed by Uttal et al. (2013) 
go against the common misconception that spatial reasoning is “fixed” and 
consequently “unteachable.” On the contrary, spatial reasoning appears to 
be highly malleable. Moreover, a wide variety of training methods appear 
effective in bringing about durable and transferable improvements in people 
of all ages. 

A survey of interventions and activities to support 
young children’s spatial reasoning

In this section, we provide an overview of the types of interventions and 
activities that have been found to support the development of young 
children’s spatial reasoning, including block building, puzzle play, drawing 
exercises, and paper-folding activities, including origami. Each one of these 
activities simultaneously targets a number of important spatial skills and to 
varying extents all encourage the development of spatial visualization skills 
– a feature and type of spatial reasoning that is closely linked to mathematics 
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performance (Mix & Cheng, 2012). Together, the interventions detailed below 
offer an assortment of “easy-to-implement” classroom activities and ideas for 
lessons that provide multiple entry points to engage, support, and improve 
students’ spatial reasoning skills. 

Construction lay

Construction play with materials, such as wooden blocks, LegoTM, and 
MeccanoTM toys, has been closely linked with the development of spatial 
reasoning (e.g., Casey et al., 2008; Nath & Szücs, 2014). Construction play 
affords opportunities to develop spatial reasoning through physical and visual 
experiences involving the composition and decomposition of 3D structures, 
perspective taking (e.g., moving around one’s structure), symmetry, and 
transformations (e.g., rotations, translations, reflections). Although interest 
and time spent engaging in construction play has been related to spatial 
reasoning (c.f. Doyle, Voyer, & Cherney, 2012; Robert & Héroux, 2003), more 
recent research has revealed that it is the quality, both accuracy and complexity, 
of the building that seems most salient.

Casey et al. (2008), for example, conducted an intervention study with 
kindergarten children in which they studied the effectiveness of different types 
of block-play on students’ spatial reasoning skills. In this study kindergarten 
classrooms were assigned to one of three block-building groups. One of the 
groups engaged in free, unguided block play. A second group of students were 
given specific building goals for their block play (e.g., build a wall that could 
be used to contain animals). Finally, the third group were provided with these 
same building goals but embedded in a narrative (e.g., a story involving a 
dragon, Sneeze, who required help re-building a series of fallen down castles). 
Importantly, in all three conditions, children spent an equal amount of time 
engaging in block play. Both before and after the various interventions, all of 
the children were assessed on a number of measures including an assessment 
of block building complexity, 3D mental rotation, and block design – a 
common intelligence test that involves recreating 2D geometry designs using 
variously coloured and patterned cubes. 

Results showed that, compared to those who engaged in free block play, 
children in the goal-directed block play groups demonstrated significant 
gains on the block design test. However, only those children in the narrative 
condition demonstrated significant gains in their block building performance. 
These findings are important as they indicate that the quality of block building 
influences the development of children’s spatial reasoning skills. This study 
adds to a growing body of research that demonstrates the importance of 
providing children with teacher-guided block-play that involves specific 
building goals (e.g., see Reifel & Greenfield, 1982; Gregory, Kim & Whiren, 
2003; Hanline, 2001). 

Puzzle play

There is growing recognition that puzzles (e.g., jigsaw, TangramsTM, pentomino 
challenges, etc.) provide a meaningful opportunity, especially early in 
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development, to build spatial skills. Just like construction play, puzzles target 
a number of different spatial skills, including composition and decomposition 
of shapes, mental rotation, and spatial reasoning (e.g., “this one must be a 
corner piece”). One recent study demonstrated just how important early 
puzzle play might be in contributing to the development of spatial skills 
(Levine, Ratcliff, Huttenlocher, & Cannon, 2012). In this study, the authors 
observed child-parent(s) interactions in their homes every four months while 
the child was between 2 and 4 years. When the children were 4.5 years, they 
were assessed on a spatial task that involved mental transformations of 
various 2D shapes (see CMTT in Table 2.1). This study yielded two important 
findings: children who were observed playing with puzzles during the 
visits over the 2 years performed better on the spatial task than those who 
did not engage in puzzle play. This relationship held even after controlling 
for important parental variables, such as, education, household income, and 
parental language. Moreover, the frequency and quality of puzzle play – 
amongst those who did play with puzzles – was further predictive of how 
well the children performed on the task. This study suggest that even before 
formal school entry certain home activities, such as puzzle play, are related 
to later spatial skills (Doyle, Voyer, & Cherney, 2012; Robert & Héroux, 2003).

Cross-sectional studies conducted with early elementary students have 
further solidified a link between puzzle performance and spatial reasoning 
skills. For example, Verdine et al. (2008) found high correlations between 
performance on a standard jigsaw puzzle and measures of mental rotation, 
spatial perception, and spatial visualization. In an attempt to harness the 
relationship between puzzle play and certain geometry and spatial skills, 
one group of researchers designed and carried out a one-month “puzzle” 
intervention (Casey, Erkut, Cedar, & Young, 2008). Children were either 
assigned to a control condition (i.e., free play) or an experimental condition that 
involved listening and responding to a narrative. As part of the experimental 
condition, students worked through a series of open-ended puzzle tasks 
involving Tangrams. The results indicated that all boys – regardless of group 
assignment – demonstrated approximately equal gains on a pre- and post-test 
involving various puzzle tasks (designed to assess part-whole understanding). 
Interestingly, girls in the experimental condition but not the control group 
demonstrated significant gains on the task. This study suggests that, at least 
for young girls, puzzle play might be one effective approach for improving 
the early understanding of part-whole relations. 

Perhaps the most promising puzzle intervention to date involves training 
with the video game Tetris (Okagaki & Frensch; Terlecki, Newcombe, & 
Little, 2008); a fast paced puzzle game that involves rotating and translating 
polyominoe shapes into the most optimal position. Although studies have 
only been carried out with adolescents and adults, the findings from these 
studies suggest that game play results in improved mental rotation skills and 
spatial visualization. There is no reason to suspect that games such as Tetris 
would not also be useful in early learning settings. 
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Drawing tasks 

At some point in elementary mathematics, one must confront the often-
difficult task of interpreting and creating isometric drawings – a feat that 
requires spatial reasoning skills. In a number of studies with engineering 
students, researchers have demonstrated the promising effects of training 
these students in perspective drawing skills. Indeed very promising research 
studies have shown that intensive drawing practice, of the sort that involves 
learning how to accurately represent 2D and 3D objects, can significantly 
improve engineering students’ spatial skills (Baartmans & Sorby, 1996; 
McAuliffe, 2003; Sorby, 2009). 

Recent evidence suggests that drawing activities might also be an effective 
way of improving young children’s spatial reasoning. For example, Tzuriel 
and Egozi (2010) carried out a drawing intervention with a population of first 
grade children. The intervention consisted of eight 45-minute sessions based 
on Quick DrawTM stimuli (see Wheatley, 1996). Working with small groups of 
children, the experimenter presented students with a 2D geometric design for 
only three seconds (see Figure 3.4 for an example). Children then had to draw 
the image from memory. This was followed by a group discussion that involved 
sharing how the images were initially perceived and remembered (e.g., “I saw 
an ‘X’ and a ‘T’ overlapping one another inside a square”). The experimenter 
facilitated the discussion and directed children to acknowledge the different 
perspectives amongst group members. Children were also encouraged to 
rotate the images and notice how different orientations influenced one’s 
perspective. Compared to a control group, children who participated in 
the Quick Draw activities demonstrated significant improvements on two 
separate tests of mental rotation. 

Paper folding 

One of the most established tests of spatial visualization is called the Paper 
Folding Test (see Figure 3.5). In this test, participants are presented with a 
sequence of folds in a piece of paper. The folded piece of paper is then 
punctured with a hole punch. The objective is to determine what the piece of 

Figure 3.4: Example of the types of stimuli used in Quick DrawTM. Students are 
presented with the image for three seconds and then must try to recreate the image 

from memory (for original Quick DrawTM images see Wheatley, 1996).
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paper would look like if unfolded – how many holes would appear and where 
exactly would they be located? Given that spatial visualization lies at the 
heart of spatial reasoning, many interventions aim to improve this important 
skill. Thus an ideal candidate for improving spatial visualization involves 
interventions that utilize paper-folding tasks. 

In one such study, Taylor and Hutton (2013) led a unit on origami and 
paper engineering with classrooms of fourth grade students. The intervention 
largely consisted of creating and deconstructing complex paper models 
and visualizing the results of making certain folds and cuts. Compared to a 
control group, children in the experimental group improved on two separate 
tests of spatial visualization, both of which involved mental paper folding. 
Furthermore, participants in the program reported high levels of engagement 
throughout the program. 

Cakmak, Isiksal, & Koc (2014) also used origami as an instructional 
approach to teach geometrical and spatial reasoning skills. In this study, 
students in grades 4 through 6 participated in ten, 40-minute, in-class origami 
sessions. The teacher facilitated each session by first showing the students 
how to perform a certain fold and then had students follow. Throughout the 
instructional sequences students were encouraged to work together. After 
each folding stage, the class discussed the formed shapes and their properties 
(e.g., “Which shape do we have now?” “Why do you think we get this shape?” 
and “What are the properties of this shape?”). Upon completing the origami 
model, the teacher and students summarized the geometrical concepts and 
mathematical terms encountered throughout the model making. Not only did 
students demonstrate large gains on an extensive battery of geometry and 
spatial reasoning, but students also reported an increased awareness of how 
origami related to mathematics (e.g., geometrical transformations, fractions, 
2D and 3D shapes, angles, etc.). For example, in the words of one student, 
“While making the samurai hat, we talked about the trapezoid, isosceles 
triangle, equilateral triangle, and scalene triangle. We also emphasized that 
the top and bottom bases of the trapezoid were parallel to each other. We 
folded the angles of 45˚ and 22.5˚” (p. 65). Interestingly, other researchers 
have shown that paper folding offers a potentially powerful entry point into 
students’ thinking about fractions and multiplicative reasoning (e.g., see 
Empson & Turner, 2006). Taken together, it appears as though paper folding 
is a useful tool for the teaching and learning of skills and concepts related to 
both spatial reasoning and mathematics.

Figure 3.5: An example item from the Paper Folding Test (Chu & Kita, 2011).
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Training spatial reasoning to support mathematics learning
Despite the historical relationship between spatial reasoning and 
mathematics, surprisingly few researchers have examined whether spatial 
training generalizes to mathematics learning. To our knowledge, there are 
only three studies that have directly tried to assess the use of spatial training 
for improvement in mathematics. In the next section, we review these three 
studies: one conducted in a laboratory setting; one in an afterschool program 
and one in early years classrooms. 

Training on a spatial task

In the first study to causally demonstrate the effects of spatial training on 
mathematics, the researchers, Cheng and Mix (2013), assigned children to either 
a spatial training condition (i.e., mental rotation training) or crossword puzzle 
condition. Both before and after the intervention, children completed two 
spatial tasks and a test of mixed calculation problems. Children in the spatial 
training condition were trained on the Children’s Mental Transformation Task 
(see Table 2.1). This training involved two steps. Children first were asked to 
visualize the solution to each problem. That is, to identify the correct solution 
amongst the four alternatives. Children then confirmed the accuracy of their 
response by putting together actual cardboard “cut outs” of the shapes. Thus, 
children were given immediate feedback about the accuracy of their mental 
transformations. In both conditions, the intervention lasted for a single 
40-minute training session. Remarkably, children in the spatial training group, 
but not the crossword condition, demonstrated significant improvements not 
only on the mental transformation task – an expected finding – but also on the 
calculation test. Improvements were most evident on missing term problems 
(e.g., 5 + ___ = 7), a finding that was attributed to the possibility that training 
primed children to approach the problems through spatially reorganizing the 
problems (e.g., 5 + ___ = 7 becomes ___ = 7 – 5). 

This is an important finding, as it the first empirical study to demonstrate 
the potential of spatial training as a means to facilitate calculation performance. 
However, caution is also warranted. Other studies are needed to replicate this 
finding. Not all brief interventions of this sort – no matter how well they are 
designed – will result in improved mathematics performance. Furthermore, 
failure to replicate findings from such a short intervention does not 
necessarily indicate that spatial training does not help facilitate mathematical 
understanding. 

Indeed, it is our belief that while carefully controlled experimental studies 
are necessary for moving the field forward, we also need the types of training 
studies that take place in actual classrooms and for sustained periods of time. 
In addition, while the study above targeted only one specific spatial reasoning 
skill, little is known about how targeting multiple spatial skills might effect 
mathematics learning. What follows is a description of two studies that have 
attempted to address some of these issues. 
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A construction-based afterschool arts program

Working with underserved and at-risk preschool populations, Grissmer et al. 
(2013) designed and carried out an extremely intensive spatial intervention. 
Half the preschoolers were assigned to the experimental group and half were 
assigned to the “business as usual” control group. Children in experimental 
group took part in a seven-month intervention that was aimed at developing 
spatial and fine-motor skills. Four times a week, for a approximately 45 
minutes, children took part in activities that involved creating and copying 
geometric designs made from a variety of materials, including Legos®, 
Wikki Stix®, and pattern blocks. Although both groups of children started 
at the same place in terms of their testing performance, there were marked 
differences between the two groups at the end of the intervention. Compared 
to the control group, those in the spatial intervention demonstrated gains in a 
number of areas, including spatial reasoning, self-regulation, and importantly 
in overall mathematics performance. In terms of mathematics performance, 
children in the spatial group advanced an impressive 17 percentile points, 
from 30th to 47th percentile, on a nationwide test of numeracy and problem 
solving. This finding provides some preliminary evidence that an intensive 
and sustained spatial program, that utilizes a number of different spatial 
tasks, is an effective means of supporting young children’s mathematical 
development. This study also points to the promising effects of interventions 
that aim to strengthen young children’s construction skills. 

A seven-month in-class spatial reasoning intervention 
As part of an ongoing professional development research project, Math for 
Young Children (e.g. Moss, Hawes, Naqvi, & Caswell, in press), researchers 
worked with a group of Junior Kindergarten to Second Grade teachers in 
three schools primarily serving First Nations populations. The researchers 
implemented an in-class intervention in which spatial reasoning tasks were 
incorporated into the regular mathematics curriculum (Moss, Hawes, Caswell, 
Naqvi, & MacKinnon, in preparation). Teachers in both the experimental and 
control groups participated in separate professional development sessions. 
The teachers from the experimental group received professional development 
on teaching and learning of spatial reasoning; and teachers in the control 
group worked on inquiry approaches to environmental science. 

The spatial reasoning intervention was delivered by the teachers over 
7 months and consisted mainly of a series of brief spatial tasks, which 
became known as “rug activities.” The rug activities included drawing, 
building, copying, and visualization exercises (see Table 3.1) and targeted the 
development of the young students’ intrinsic-dynamic spatial reasoning (Mix 
& Cheng, 2012). These activities were carried out with the full class during 
“circle time” or with small groups at teacher-guided math centers. There were 
significant variations in how much time individual teachers devoted to these 
activities. However, on average, students participated in the activities three 
times a week for a total of approximately 40 hours throughout the school year. 
To assess the efficacy of the intervention, all of the students (N=67) participated 
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Table 3.1: Examples of “rug activities” carried out in the experimental classrooms

Name of "Rug Activity" Description of Activity 
 Geometry and spatial skills 
targeted 

1. 
Can you Draw this? 

 

•  Children were provided with pieces of paper with an outline of a 
   square on it 

•  Children were then shown a geometric design composed within   the square 
boundaries 

•  After viewing the design for 10 seconds, children attempted to re-create (using 
a pencil) the exact design within the boundaries of their own square 

•  Teachers facilitated discussions around strategies and different ways of 
remembering the designs 

•  Note: this activity was based on Wheatley, 1996; also see Tzuriel & Egozi 
(2010) for a study on the effectiveness of this activity) 
 

•  Visual-spatial memory/ 
visualization  

•  Composing/decomposing/ 
partitioning space 

•  Proportional reasoning 

2. 
Can you Build this? 

 

 

•  Similar procedures to 'Can you Draw this?' 
•  Children were shown a geometric structure composed of multi-link cubes 
•  After viewing the structure for 10 seconds, children attempted to re-create the 

structure from memory using their own multi-link cubes  
•  In another version of this activity, children were presented with a structure and 

asked to re-create it with no memory component 
 

•  Visual-spatial 
memory/visualization 

•  Composing/decomposing 3D 
figures 

3. 
Building with the 

Mind's Eye 
 

 

•  Children were given oral instructions in how to build a 2D or 3D shape/figure 
(e.g., Take two blue cubes and attach them together, one on top of the other. 
Stand up the two attached cubes and make them look like a tower. Now take a 
red cube and attach to ... etc.) 

•  Children built images of the shape/figure in mind, based on instructions given 
•  After giving instructions, teacher showed children multiple shapes/figures and 

had children discuss/reason which one perfectly matched the description 

•  Visualization 
•  Composition of 2D shapes, 

3D figures 
•  Mental transformations 
•  Spatial language 

comprehension 
•  Visual-spatial working 

memory 

4. 
Shape Transformer 

 

 

•  Modeled after the 'Function Machine,' an 'input/output' activity typically done 
with numbers (e.g., input = 2, output = 4; input = 5, output = 10,…etc. Rule, 
y = 2x) 

•  In this version, input and output functions deal with spatial relationships (e.g., 
transformations) 

•  Children were presented with a “machine” made out of a poster board, with 
“input” and an “output” slots cut out 

•  Teacher (and eventually students) prepared input and output cards to enter 
and exit into/out of the “machine”  

•  Children watched and paid attention to relationship between input and output 
cards and tried to predict the transformation (e.g., each shape that goes into 
the machine gets rotated 45°) 
 

•  Mental 
transformations/visualization 

•  Visual-spatial reasoning/ 
deductive reasoning 

•  Composition/decomposition 
of 2D shapes 

5. 
Barrier Game 

 

•  Children worked in pairs with a barrier (folder) in between them and each with 
their own building materials (e.g., pattern blocks or multi-link cubes) 

•  One partner built a shape/figure and described how to build the shape/figure 
to his/her partner, who built according to the instructions provided   

•  Children then compared their structures before reversing roles  

•  Spatial language 
•  Visualization 
•  Composing/decomposing 2D 

shapes/3D figures 
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in pre and post assessments of spatial language, visual-spatial geometric 
reasoning, 2D mental rotation, number knowledge, magnitude comparison, 
and a repeated measures control task assessing receptive vocabulary. While 
there was no significant difference in performance between the two groups at 
the beginning of the school year, there were remarkable differences at the end 
of the year. Compared to the control group, children who had participated 
in the spatial activities demonstrated widespread improvements on all of 
the spatial measures, including spatial language, 2D mental rotation, and 
visual-spatial geometric reasoning. And surprisingly, a significant difference 
emerged on a test of symbolic (i.e., Arabic digits) magnitude comparison; a 
test shown to be significantly related to children’s arithmetic performance 
(Nosworthy et al., 2013). This finding was not expected, as the intervention 
did not explicitly focus on number development. This is a novel finding and 
one that suggests the possibility that early spatial instruction not only benefits 
children’s spatial competencies but might also contribute to the development 
of early numeracy skills. 

On a final note, as has been reported in other spatial intervention studies 
(Cakmak, Isiksal, & Koc, 2014), both the teachers and students reported high 
levels of enjoyment and engagement throughout the intervention. The teachers 
who led the intervention agreed that the spatial activities offered multiple 
entry points for their diverse learners, and furthermore, led to new insights 
into the potential for spatial reasoning to serve as an important foundation for 
mathematics learning. 

Linking ideas
We are entering an exciting and promising era of spatial reasoning research. 
It is no longer enough to show that spatial reasoning and mathematics are 
related. The time has come to explain why the two are related, and furthermore, 
to mobilize and apply our existing knowledge in fruitful and long-lasting 
ways. To the latter point, we see early years education as an important place 
to begin such efforts. In this chapter, we shared a working hypothesis of 
how and why spatial reasoning and mathematics go hand-in-hand, paying 
particular attention to how spatial reasoning can provide an important 
foundation for mathematics learning. Indeed, there is now extensive evidence 
that spatial reasoning is malleable and can be improved in people of all ages 
and through a wide variety of training techniques. Although the majority of 
spatial training studies have been conducted in carefully controlled “lab” 
experiments, the educational implications of these findings are significant and 
potentially far-reaching. In terms of early years mathematics education, there 
is an accumulating body of intervention studies pointing to the importance 
of providing opportunities for high quality construction play (e.g., building 
blocks), puzzle play, drawing exercises, and paper folding. In moving forward, 
we urge psychologists and mathematics educators to work together in both 
the design and implementation of classroom-based spatial interventions. 


