NUMBER SENSEANDNUMERATIONWTHTHEABACUS

Presented by GLORIAHO

WHATISTHEABACUS?

- Counting frame
- Computation device
- Comes in many shapes and forms

Chinese Suanpan - 2:5 beads for a base 10 system

WHAT ISIT GOODFOR?

- Pattern spotting and exploring number relationships through natural discovery - "Students are also encouraged to think quantitatively (and more and more abstractly), model mathematics, and look for patterns and structures." (Clarke, 2014)
- Understanding place value
- Develop compensation (use of multiple strategies and representations i.e. friendly groupings) to develop automaticity and lessen cognitive load
- Tactile \& Visual (Tournaki, 2008)
- Computation does not require notation
- Sense of confidence and success in dealing with large sums in addition, subtraction, multiplication and division

RESOURCES

Online Rekenrek - https://apps.mathlearningcenter.org/number-rack/
Blanke, B. (2008). Using the Rekenrek as a visual model for strategic reasoning in mathematics. The Math Learning Centre. Retrieved from
https://bridges1.mathlearningcenter.org/files/media/Rekenrek 0308.pdf.
Clarke, G., Isenegger, R., Grafton, A., Corrigan, K. \& Margerm, P. (2014). What's new with CLIPS? There's an app for that! (the Rekenrek tool app!). Gazette - Ontario Association for Mathematics, 52 (3), 23-26.
Tournaki, N., Young, S.B., \& Kerekes, J. (2008). Rekenrek: A manipulative used to teach addition and subtraction to students with learning disabilities. Learning Disabilities: A Contemporary Journal 6 (2), 41-59.

WHATCANYOUDOWTHTHEABACUS?

COUNT

- Use the beads to represent 1 and count from 1-100!
- Develop one-to-one correspondence!
- Stable-order!
- Cardinality!
- Conservation!
- Composing \& Decomposing numbers!
- Subitizing!
- Grouping - $1 \mathrm{~s}, 2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ etc.

ADDITION/SUBTRACTION

- Beads representing ones or rows as place holders (image below)
- Grouping - 1s, $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}$ etc.
- Discovering complementary numbers i.e. $2 \& 8,4 \& 6$ etc.

MINDS ON
> How would you represent $1486+832$ on the abacus?
$>\quad$ What are other ways to show 14?
$>\quad$ What are some ways of showing 15-9?

PLACEVALUE

- 10 Bar System
- Visually demonstrates relationship between place values

MINDS ON
$>$ How would you represent $56+45$ on an abacus?
$>\quad$ How would you represent $73 x 4$?

MULTIPLCATION/DIVISION

- Beads representing ones or rows as place holders
- Demonstrates mirror relationship between multiplication $\leftarrow \rightarrow$ division
- Visually demonstrates the operation and relationship between place values (similar to multiplication grid method)

- Discovering factors (image on right)

Final Digit	Always Divisible By	Sometimes Divisible By
1	-	$1,3,7,9$
2	2	$3,4,6,7,8,9$
3	3	7,9
4	2	$3,4,6,7,8,9$
5	5	$3,7,9$
6	2	$3,4,6,7,8,9$
7	-	3,9
8	2	$3,4,6,7,8,9$
9	-	3,7
0	2,10	$4,6,8$

MINDS ON
$>$ What are other ways of showing 8 groups of 4 for a total of 32 beads?
$>\quad$ Show $21 x 3$. Now show 63/3. What do you notice about these two calculations?
$>$ Multiply 12 by 9 on the abacus. What do you notice? Now try to show your answer in as many different groupings as possible.

